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Phase relaxation of Faraday surface waves
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Surface waves on a liquid-air interface excited by a vertical vibration of a fluid layer~Faraday waves! are
employed to investigate the phase relaxation of ideally ordered patterns. By means of a combined frequency-
amplitude modulation of the excitation signal a periodic expansion and dilatation of a square wave pattern is
generated, the dynamics of which is well described by a Debye relaxator. By comparison with the results of a
linear theory, it is shown that the measured relaxation time allows a precise evaluation of the phase diffusion
constant.

DOI: 10.1103/PhysRevE.65.066304 PACS number~s!: 47.54.1r, 47.20.Ma
i

de
th

at
ti
n

ng
al
e
o

am
a

w

er
s
b

e
e
de

h
ric
er

id
t

a
de
ar
is
e
a

the
d to
-
to

p to
or

vel

ing
ual

ms
day
ents

-
nce
re-

a-
dy-
day
lax-
s of

of
fo-

pat-
tion
fre-
red.
ent

cal
a

Our understanding of spatiotemporal pattern formation
nonequilibrium fluid systems has greatly benefited@1# from
recent quantitative experiments in combination with the
velopment of new theoretical concepts. One of them is
so-calledamplitude equationapproach@2#, which is based on
the linear instability of a homogeneous state and leads n
rally to a classification of patterns in terms of characteris
wave numbers and frequencies. A different but equally u
versal description, thephase dynamics@3#, applies to situa-
tions where a periodic spatial pattern experiences lo
wavelength phase modulations. This approach, origin
introduced in the context of thermal convection, has prov
to be useful to understand the stability and the relaxation
periodic patterns, wave number selection, and defect dyn
ics. In many paradigmatic pattern forming systems such
thermal convection in a fluid layer heated from belo
~Rayleigh-Bénard convection, RBC! or the formation of azi-
muthal vortices in the gap between two rotating cylind
~Taylor-Couette flow, TCF! the dominating wave number i
dictated by the geometry and thus inconvenient to
changed in a given experimental setup~for instance by a
mechanical ramp of the layer thickness@4#!.

Faraday waves are surface waves on the interface betw
two immiscible fluids, excited by a vertical vibration of th
container. Beyond a sufficiently large excitation amplitu
the plane interface undergoes an instability~Faraday instabil-
ity! and standing surface waves appear, oscillating wit
frequency one-half of the drive. This type of paramet
wave instability is attractive as the wavelength of the patt
is dispersionrather thangeometrycontrolled. Just by varying
the drive frequency the wave number can be tuned in a w
range. In that sense the Faraday setup is well suited for
study of phase dynamics.

Nevertheless recent research activity in this field w
mainly dedicated to the exploration of the processes un
lying the selection of patterns with a fixed wavelength. F
aday@5# was the first to provide a quantitative study of th
system, revealing that a sinusoidal vibration may induc
periodic array of squares. Later on, more complicated p
terns with up to a 12-fold rotational symmetry~quasiperiodic
structures! have been observed@6,7#. Here the amplitude
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equation technique contributed considerably to unfold
governing spatiotemporal resonance mechanisms. Applie
a set of modesk i with different orientations but fixed wave
length,uk i u5k, the resulting set of Landau equations lead
a semiquantitative understanding@8# of pattern selection in
this system. Motivated by these advances the idea came u
apply more complicated drive signals composed of two
more commensurable frequencies@9#. That way the simulta-
neous excitation of distinct wavelengths gave rise to no
surface patterns in the form of superlattices@9–11#. Only
recently, the phase information carried by the participat
modes was found to have a crucial influence on the vis
appearance of the convection structures@12#.

In comparison to other classical pattern forming syste
such as RBC or TCF, the phase dynamics in the Fara
system is much less explored. In usual Faraday experim
the drive frequency~or frequency composition including
relative amplitudes! is held fixed while the overall drive am
plitude is ramped in order to record the bifurcation seque
of appearing structures. To our knowledge none of the p
vious investigations used the excitation frequencyv as the
primary control parameter rather than the drive amplitudea.
That way it is particularly simple to impose phase perturb
tions on ordered patterns and to study their relaxation
namics. Moreover, doing phase dynamics on the Fara
system has the additional advantage of rather quick re
ation times, which in typical setups are one and two order
magnitude faster than for instance in RBC.

The present paper reports a systematic investigation
phase relaxation on Faraday surface waves. Our study is
cused on the relaxational dynamics of an ideal surface
tern with a square tesselation. By evaluating the relaxa
time of the pattern in response to small changes of the
quency, the phase diffusion coefficient has been measu
The experimental results are found to be in good agreem
with the predictions of the linear theory@3,4#, which we
evaluated for a system of infinite lateral extension.

The experimental setup consists of a black cylindri
container built out of anodized aluminum, and filled to
height h of 4.2 mm with a silicone oil~kinematic viscosity
n521.431026 m2/s, densityr5949 kg/m3, surface ten-
©2002 The American Physical Society04-1
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sion s517.331023 N/m). The lateral boundaries of ou
container have a beachlike shape; the angle of which
adapted such as to avoid the formation of a meniscus. P
pinning effects were thus avoided, actually we found no
perimental evidences for it. In order to study finite size
fects, we used three different containers, with inner dia
eters L15265 mm, L25185 mm, andL35125 mm. A
glass plate covering the container was used to prevent ev
ration, pollution, and temperature fluctuations of the liqu
Furthermore, to avoid uncontrolled changes of the viscos
density, and surface tension of the liquid, all the measu
ments have been performed at a constant temperature o
60.1°C. The Faraday waves were excited by an electrom
netic shaker vibrating vertically with an acceleration allo
ing for simultaneous amplitudeand frequency modulations
in the forma(t)cosv(t). The corresponding input signal wa
produced by a wave form generator via a digital to ana
converter. The instantaneous acceleration was measured
piezoelectric sensor. In a preparatory experiment underta
with a sinusoidal~i.e., unmodulated! drive a cosvt the criti-
cal acceleration amplitudeac(v) for the onset of the Farada
instability was determined by visual inspection of the int
face while quasistatically rampinga at fixed v52p f ~see
Fig. 1!. Throughout the investigated frequency interv
70 Hz, f ,110 Hz the surface patterns, which appear a
supercritical drive of less than about 1.13ac , always con-
sisted of an ordered square wave pattern, which—after s
healing time—was free of defects@Fig. 1~b!#. In order to
study the dynamics of phase-perturbed patterns we have
ried out measurements of the average wave numberk(t) of
the Faraday pattern in response to small changes of the d
frequencyv(t) around a mean valuev0. Thev modulation
has been accomplished in two different ways.~i! By discon-
tinuous jumps~back and forth! between frequenciesv0

FIG. 1. ~a! Symbols denote the critical acceleration amplitu
ac as measured at the onset of the Faraday instability at con
drive frequencyv52p f . The solid line indicates the theoretica
prediction for the material parameters given. Along the dashed
the reduced drive amplitude is«59%. The phase relaxation exper
ments were performed by imposing simultaneous small change
f and a, as indicated for an example by the solid bar.~b! and ~c!
show a square pattern and the associated two-dimensional p
spectrum as observed during the modulation experiments.
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2Dv/2 and v01Dv/2 with a repetition periodT between
100 and 300 s, sufficiently large for the pattern to relax.~ii !
By a sinusoidal modulation of the drive frequency accord
to v(t)5v01Dv sin(Vt), with T51/F52p/V between 2
and 1000 s~within the frequency range of our study, th
response time of the shaker to small changes of the d
frequency is less than 10 ms and thus negligible!. In both
cases the vibration amplitudea(t) was comodulated in such
a way that the instantaneous supercritical drive«
5a(t)/ac@v(t)#21 remained constant@see Fig. 1~a!#. The
bandwidthDv of the modulation needed to be confined to
few Hz in order to avoid the occurrence of dislocation-ty
defects. Under such conditions the square pattern remai
practically ideal without perturbations@see Fig. 1~b!#, just
expanding and contracting~breathing! in a homogeneous
manner with the modulation periodT. To obtain the tempora
wave number dependence a full frame CCD camera
rounded by a set of four incandescent lamps was moun
some distance above the container. About 100 pictures of
light reflected from the surface were taken at consecu
instances of maximum surface excursion from which
spatially averaged wave numberk(t) was extracted by evalu
ating the position of the principal peaks in a two-dimensio
fast Fourier transform.

The wave numberk(t) followed the modulation in a re-
laxational manner. For the discontinuous modulation~i! this
is directly apparent from Fig. 2. Here the relaxation timet
has been derived by fitting the exponential decay of the d
In the type ~ii ! experimentk(t) oscillates around a mea
valuek0 with an amplitudeDkm and a temporal phase lagd
~see Fig. 3!. Introducing the complex wave number incr
ment Dk!5Re@Dk!#1 i Im@Dk!#5Dkmeid, its real and
imaginary parts are plotted in Fig. 4 as a function of t
modulation frequencyF. The solid curves of this figure ar
fits of a linear Debye relaxator@13#, where Dk* 5Dk(V

nt

e

of

er

FIG. 2. Temporal decay of the wave numberk(t) in response to
a steplike@type ~i!# change of the drive frequencyf. Also the drive
amplitude a was changed to keep the reduced amplitude«
5a(t)/ac@v(t)#21 constant. The decay of the wave numberk(t)
could be fitted by an exponential.~Parameters:L50.265 m, «
59%, f 590 Hz.!
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50)/@11iVt#. Figure 5 shows the relaxation timet, as ob-
tained from both types of experiments, as a function of
mean wave numberk0, the container diameterL, and the
reduced drive strength«. A dependence on the~small! modu-
lation amplitudeDv could not be detected. The experimen
data reveal a linear increase with the wave numberk0 and a
proportionality to the square of the container sizeL.

The dependence of the relaxation timet on, respectively,
k0 , L, and« can be understood in terms of the phase dif
sion approach@3#. Here one takes advantage of the fact th
local disturbances of the elevation amplitude die out rapi
while long-wavelength phase perturbation survive on a m
longer ~diffusive! time scale. To streamline the argumen
and to work out the basic physics we consider a o
dimensional surface elevation profile in the form of stripes
given by z(x,t)}@eik0x1w(x,t)1c.c.#cos(vt/2). Here ]xw
5Dk describes the spatiotemporal variation of the lo
wave number around the underlying base pattern with

FIG. 3. Relaxational dynamics of the wave numberk(t) in re-
sponse to a sinusoidal@type ~ii !# modulation of the drive frequency
The drive amplitudea was comodulated to keep the reduced amp
tude « constant. The Faraday pattern responds with a sinuso
variation of its instantaneous wave numberk(t) with an amplitude
Dkm and a temporal phase lagd ~parameters:L50.265 m, «
59%, andf 590 Hz).

FIG. 4. Frequency ‘‘dispersion’’ of the real and imaginary pa
of Dk* as obtained from modulation experiments of type~ii ! for the
two different container diametersL15265 mm andL35125 mm
( f 590 Hz, k051480 m21, and«59%). Solid curves are fits ac
cording to the Debye relaxator.
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wave numberk0. Following the phase diffusion approach th
phase w obeys a diffusion equation of the form] tw
5D i]xxw with the diffusion constant~valid just above onset!
of the form

D i5
j0

2

t0

«23j0
2~k02kc!

2

«2j0
2~k02kc!

2
. ~1!

The coefficients t0
215]l/]«uk5kc ,«50 and j0

252t0/

2(]2l/]k2)uk5kc ,«50 are given in terms of the linear growt

ratel5l(«,k) at which planar wave perturbations grow o
of the plane undeformed interface, when the Faraday in
bility sets in. Herekc is the wave number at onset of th
Faraday instability. For weakly damped (nk0

2/v!1) capil-
lary waves@k0.(r/s)1/3(v/2)2/3# on a deep (kh@1) fluid
layer ~reasonable approximations in our experiment! one
obtains approximately t0

21.2nk0
2 and j0

25(1/2)@9s/
(16n2r)#k0

23. By decomposition of the phase perturbatio
into a set of discrete Fourier modes compatible with the
nite container dimension,w5(n51

` an sin(np/L), the mode
n51 has the slowest decay time

t5
L2

p2
D i

215
nr

s
k0

16L2

9p2

«2j0
2~k02kc!

2

«23j0
2~k02kc!

2
, ~2!

and thus determines the relaxation time of the wave num
of the experiment. The dashed line in Fig. 5 is the predict
according to Eq.~2!. For a quantitatively more reliable chec
we also evaluated the coefficientst0 and j0

2 numerically
from a linear analysis, which takes into account the fin
filling level as well as gravitational contributions to the wa
dispersion. The respective result is shown by the solid line
Fig. 5~a!. Furthermore, the predicted quadratic depende
of t on the container dimensionL is verified by Fig. 5~b!.
The theoretical prediction Eq.~2! also implies a slight depen

-
al

FIG. 5. The characteristic relaxation timet as a function of~a!
the mean wave numberk0, ~b! the container sizeL, and ~c! the
reduced drive strength«. The dashed line shows the prediction f
infinite depth capillary waves@Eq. ~2!#, while the solid line is based
on a numerical evaluation for the~more realistic! case of finite
depth gravity-capillary waves.~Parameters:L50.265 m,«59%,
and f 590 Hz.!
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dence oft on the drive amplitude«. However, checking for
this feature requires to account for the fact that the m
wave numberk0 is also affected by the drive strength. W
deduced the empiric dependencek0 /kc512b« with b
50.264 from a control run where« was slowly ramped a
fixed f. Inserting this result into the last term on the righ
hand side of Eq.~2! leads to the following expression:

t~«!

t~«50!
5

12j0
2kc

2b2«

123j0
2kc

2b2«
. ~3!

Although this relation@see solid line in Fig. 5~c!# gives a
reasonable estimate for the«-dependence oft it does not
correctly reflect the empiric dependence. Apparently this
finite size effect, which is expected to become significan
small values of«. Rothet al. @14# recently demonstrated tha
ys
s.
.

ys
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the effective phase diffusion constant, measurable in R
and TCF relaxation experiments, depends sensitively on
aspect ratioa5A«L/j0, defined by the quotient between th
container dimension and the linear correlation length. Tak
TCF as an example, a decrease ofa from 50 down to 15
~which in our experiment corresponds to a reduction of«
form 9% to 2%) implies a decay of the relaxation time
20–30%. This is of the same order of magnitude as the va
observed in our measurements@see Fig. 5~c!#.
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