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Phase relaxation of Faraday surface waves
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Surface waves on a liquid-air interface excited by a vertical vibration of a fluid ld@aaday wavesare
employed to investigate the phase relaxation of ideally ordered patterns. By means of a combined frequency-
amplitude modulation of the excitation signal a periodic expansion and dilatation of a square wave pattern is
generated, the dynamics of which is well described by a Debye relaxator. By comparison with the results of a
linear theory, it is shown that the measured relaxation time allows a precise evaluation of the phase diffusion
constant.
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Our understanding of spatiotemporal pattern formation inequation technique contributed considerably to unfold the
nonequilibrium fluid systems has greatly benefiféfifrom  governing spatiotemporal resonance mechanisms. Applied to
recent quantitative experiments in combination with the dea set of modeg; with different orientations but fixed wave-
velopment of new theoretical concepts. One of them is théength, |k;| =k, the resulting set of Landau equations lead to
so-calledamplitude equatiompproacH?2], which is based on a semiquantitative understandifi@] of pattern selection in
the linear instability of a homogeneous state and leads natdhis system. Motivated by these advances the idea came up to
rally to a classification of patterns in terms of characteristicapply more complicated drive signals composed of two or
wave numbers and frequencies. A different but equally uniimore commensurable frequenc[€3. That way the simulta-
versal description, thehase dynamicE3], applies to situa- neous excitation of distinct wavelengths gave rise to novel
tions where a periodic spatial pattern experiences longsurface patterns in the form of superlattid®s-11]. Only
wavelength phase modulations. This approach, originallyecently, the phase information carried by the participating
introduced in the context of thermal convection, has provermodes was found to have a crucial influence on the visual
to be useful to understand the stability and the relaxation oéppearance of the convection structur&g].
periodic patterns, wave number selection, and defect dynam- In comparison to other classical pattern forming systems
ics. In many paradigmatic pattern forming systems such asuch as RBC or TCF, the phase dynamics in the Faraday
thermal convection in a fluid layer heated from below system is much less explored. In usual Faraday experiments
(Rayleigh-Baard convection, RBCor the formation of azi- the drive frequency(or frequency composition including
muthal vortices in the gap between two rotating cylindersrelative amplitudesis held fixed while the overall drive am-
(Taylor-Couette flow, TCFthe dominating wave number is plitude is ramped in order to record the bifurcation sequence
dictated by the geometry and thus inconvenient to beof appearing structures. To our knowledge none of the pre-
changed in a given experimental set(fpr instance by a vious investigations used the excitation frequercys the
mechanical ramp of the layer thickng<g). primary control parameter rather than the drive amplitade

Faraday waves are surface waves on the interface betwedinat way it is particularly simple to impose phase perturba-
two immiscible fluids, excited by a vertical vibration of the tions on ordered patterns and to study their relaxation dy-
container. Beyond a sufficiently large excitation amplitudenamics. Moreover, doing phase dynamics on the Faraday
the plane interface undergoes an instabilfgraday instabil- system has the additional advantage of rather quick relax-
ity) and standing surface waves appear, oscillating with ation times, which in typical setups are one and two orders of
frequency one-half of the drive. This type of parametricmagnitude faster than for instance in RBC.
wave instability is attractive as the wavelength of the pattern The present paper reports a systematic investigation of
is dispersionrather thargeometrycontrolled. Just by varying phase relaxation on Faraday surface waves. Our study is fo-
the drive frequency the wave number can be tuned in a wideused on the relaxational dynamics of an ideal surface pat-
range. In that sense the Faraday setup is well suited for thiern with a square tesselation. By evaluating the relaxation
study of phase dynamics. time of the pattern in response to small changes of the fre-

Nevertheless recent research activity in this field wasjuency, the phase diffusion coefficient has been measured.
mainly dedicated to the exploration of the processes undeithe experimental results are found to be in good agreement
lying the selection of patterns with a fixed wavelength. Far-with the predictions of the linear theof,4], which we
aday[5] was the first to provide a quantitative study of this evaluated for a system of infinite lateral extension.
system, revealing that a sinusoidal vibration may induce a The experimental setup consists of a black cylindrical
periodic array of squares. Later on, more complicated pateontainer built out of anodized aluminum, and filled to a
terns with up to a 12-fold rotational symmefiguasiperiodic  heighth of 4.2 mm with a silicone oilkinematic viscosity
structurey have been observefb,7]. Here the amplitude »=21.4x10"°% m?/s, densityp=949 kg/n¥, surface ten-
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FIG. 1. (a) Symbols denote the critical acceleration amplitude time [s]
a. as measured at the onset of the Faraday instability at constant )
drive frequencyw=2f. The solid line indicates the theoretical ~ F!G: 2. Temporal decay of the wave numlt) in response to
prediction for the material parameters given. Along the dashed lin& Steplikeltype (i)] change of the drive frequendyAlso the drive
the reduced drive amplitude és=9%. The phase relaxation experi- @mPplitude a was changed to keep the reduced amplitude
ments were performed by imposing simultaneous small changes of &(t)/a@(t)]—1 constant. The decay of the wave numi¢t)
f anda, as indicated for an example by the solid b and () could be fitted by an exponentialParametersL. =0.265 m, ¢
show a square pattern and the associated two-dimensional pow?rg%' f=90 Hz)

spectrum as observed during the modulation experiments. . .
P g P —Aw/2 and wy+ A w/2 with a repetition periodl’ between

sion 0=17.3<10"3 N/m). The lateral boundaries of our 100 and 300 s, sufficiently large for the pattern to reléy.
container have a beachlike shape; the angle of which w&y a sinusoidal modulation of the drive frequency according
adapted such as to avoid the formation of a meniscus. Phase w(t) = wg+ Aw sin(Qt), with T=1/F =27/ between 2
pinning effects were thus avoided, actually we found no exand 1000 s(within the frequency range of our study, the
perimental evidences for it. In order to study finite size ef-response time of the shaker to small changes of the drive
fects, we used three different containers, with inner diamfrequency is less than 10 ms and thus negligible both
eters L;=265 mm, L,=185 mm, andL;=125 mm. A cases the vibration amplitudgt) was comodulated in such
glass plate covering the container was used to prevent evapa- way that the instantaneous supercritical drive
ration, pollution, and temperature fluctuations of the liquid.=a(t)/a [ w(t)]—1 remained constarisee Fig. 1a)]. The
Furthermore, to avoid uncontrolled changes of the viscositybandwidthA » of the modulation needed to be confined to a
density, and surface tension of the liquid, all the measurefew Hz in order to avoid the occurrence of dislocation-type
ments have been performed at a constant temperature of 3@fects. Under such conditions the square pattern remained
+0.1°C. The Faraday waves were excited by an electromagsractically ideal without perturbationsee Fig. 1b)], just
netic shaker vibrating vertically with an acceleration allow- expanding and contractin¢preathing in a homogeneous
ing for simultaneous amplitudand frequency modulations manner with the modulation peridd To obtain the temporal

in the forma(t)cosw(t). The corresponding input signal was wave number dependence a full frame CCD camera sur-
produced by a wave form generator via a digital to analogounded by a set of four incandescent lamps was mounted
converter. The instantaneous acceleration was measured bysame distance above the container. About 100 pictures of the
piezoelectric sensor. In a preparatory experiment undertakdight reflected from the surface were taken at consecutive
with a sinusoidali.e., unmodulateddrive a coswt the criti- instances of maximum surface excursion from which the
cal acceleration amplitude,(w) for the onset of the Faraday spatially averaged wave numbgit) was extracted by evalu-
instability was determined by visual inspection of the inter-ating the position of the principal peaks in a two-dimensional
face while quasistatically ramping at fixed o=27f (see fast Fourier transform.

Fig. 1). Throughout the investigated frequency interval The wave numbek(t) followed the modulation in a re-

70 Hz<f<110 Hz the surface patterns, which appear at daxational manner. For the discontinuous modulatiorthis
supercritical drive of less than about X&., always con- is directly apparent from Fig. 2. Here the relaxation time
sisted of an ordered square wave pattern, which—after sonteas been derived by fitting the exponential decay of the data.
healing time—was free of defec{§ig. 1(b)]. In order to In the type (ii) experimentk(t) oscillates around a mean
study the dynamics of phase-perturbed patterns we have caraluek, with an amplitudeAk,, and a temporal phase la%

ried out measurements of the average wave nurkfigrof  (see Fig. 3. Introducing the complex wave number incre-
the Faraday pattern in response to small changes of the drivaent Ak*=RgAk*]+i Im[Ak*]=Ake'’, its real and
frequencyw(t) around a mean value,. The @ modulation  imaginary parts are plotted in Fig. 4 as a function of the
has been accomplished in two different wafi By discon-  modulation frequency. The solid curves of this figure are
tinuous jumps(back and forth between frequencies, fits of a linear Debye relaxatdrd3], where Ak* = Ak(Q
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FIG. 3. Relaxational dynamics of the wave numkét) in re-
sponse to a sinusoidtype (i) ] modulation of the drive frequency. FIG. 5. The characteristic relaxation timeas a function ofa)
The drive amplitudea was comodulated to keep the reduced ampli-the mean wave numbeéd, (b) the container size., and (c) the
tude ¢ constant. The Faraday pattern responds with a sinusoidaeduced drive strength. The dashed line shows the prediction for
variation of its instantaneous wave numiigt) with an amplitude infinite depth capillary wavegEq. (2)], while the solid line is based
Aky and a temporal phase lag (parametersL=0.265 m, e  on a numerical evaluation for thémore realistit case of finite
=9%, andf=90 Hz). depth gravity-capillary wavegParameterst. =0.265 m,s=9%,

andf=90 Hz)

=0)[1+iQ7]. Figure 5 shows the relaxation time as ob-
tained from both types of experiments, as a function of thewave numbek,. Following the phase diffusion approach the
mean wave numbek,, the container diametdr, and the phase ¢ obeys a diffusion equation of the formd,¢
reduced drive strength. A dependence on themal) modu- =D dyye With the diffusion constantvalid just above onsgt
lation amplitudeA w could not be detected. The experimental of the form
data reveal a linear increase with the wave nunigeaind a
proportionality to the square of the container size gg s—3§§(ko—kc)2

The dependence of the relaxation timen, respectively, H:T_O W @)
ko, L, ande can be understood in terms of the phase diffu- otto Te
sion approacﬂi3]. Here one takgs advan.tage of the fact t_hat-l-he coefficients 761=f97\/c98|k:k ._o and §§= .
local disturbances of the elevation amplitude die out rapidly, = 2 . e .
while long-wavelength phase perturbation survive on a mucﬁ(a N K%)= k;.e=0 @re given in terms of the linear growth
longer (diffusive) time scale. To streamline the argumentsrateh =\(e,k) at which planar wave perturbations grow out
and to work out the basic physics we consider a oneof the plane undeformed interface, when the Faraday insta-
dimensional surface elevation profile in the form of stripes adility sets in. Herek. is the wave number at onset of the
given by ¢(x,t)x[ekot e ¢ clcoswt/2). Here g,  Faraday instability. For weakly dampedkl/w<1) capil-
=Ak describes the spatiotemporal variation of the locallary waves[ky=(p/o) ¥ (0/2)??] on a deep Kh>1) fluid
wave number around the underlying base pattern with théayer (reasonable approximations in our experimeahe

obtains approximately 7, *=2vk3 and &=(1/2)[9a/

20 R (16v2p) 1k, 3. By decomposition of the phase perturbations
g 167 2% o L;:ojusm into a set of discrete Fourier modes compatible with the fi-
o Debye-fit nite container dimensionp=2X._,a, sin(ha/L), the mode
L12 “n=1
§ o n=1 has the slowest decay time

4 L2 wp 162 e gh(ke—ko)?

=D =k 2 > @
T 0 97 e—3&5(ko—Ke)

and thus determines the relaxation time of the wave number
of the experiment. The dashed line in Fig. 5 is the prediction
according to Eq(2). For a quantitatively more reliable check
we also evaluated the coefficients and £5 numerically
from a linear analysis, which takes into account the finite
FIG. 4. Frequency “dispersion” of the real and imaginary parts filling level as well as gravitational contributions to the wave
of Ak* as obtained from modulation experiments of tyjpefor the  dispersion. The respective result is shown by the solid line in
two different container diametets,=265 mm andL,=125 mm  Fig. 5@). Furthermore, the predicted quadratic dependence
(f=90 Hz, ko=1480 m !, ande=9%). Solid curves are fits ac- Of 7 on the container dimensioh is verified by Fig. %b).
cording to the Debye relaxator. The theoretical prediction E¢R) also implies a slight depen-

F[Hz]
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dence ofr on the drive amplitude. However, checking for the effective phase diffusion constant, measurable in RBC
this feature requires to account for the fact that the meamand TCF relaxation experiments, depends sensitively on the
wave numberk, is also affected by the drive strength. We aspect ratiax= \/sL/&,, defined by the quotient between the
deduced the empiric dependenkg/k.=1—pBe with B8 container dimension and the linear correlation length. Taking
=0.264 from a control run where was SlOle ramped at TCF as an examp|e, a decreaseaofrom 50 down to 15
fixed f..lnserting this result into the Ia}st term on _the right- (which in our experiment corresponds to a reductione of
hand side of Eq(2) leads to the following expression: form 9% to 2%) implies a decay of the relaxation time by
202 .0 20-30%. This is of the same order of magnitude as the value
7(e) 1-&okeB%e (3y  Observed in our measuremeiisee Fig. £)].

m(e=0) 1-38K2p3%

Although this relation[see solid line in Fig. &)] gives a
reasonable estimate for thedependence of it does not
correctly reflect the empiric dependence. Apparently this is a We thank M. Licke for helpful comments and J. Albers
finite size effect, which is expected to become significant afor his support. This work is supported by the Deutsche For-
small values ot. Rothet al. [14] recently demonstrated that schungsgemeinschatt.
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